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Abstract 

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of 

dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers 

to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-

based sensors have some benefits including low price and low consumption that make them suitable 

choices to use in vehicle navigation problems. However, these sensors have some deterministic and 

stochastic error sources. These errors could diverge sensor outputs from the real values. Therefore, 

calibration of the inertial sensors is one of the most important processes that should be done in order to 

have the exact model of dynamical behaviors of the vehicle. In this paper, a new method, based on artificial 

neural network, is presented for the calibration of an inertial accelerometer applied in the vehicle 

navigation. Levenberg-Marquardt algorithm is used to train the designed neural network. This method has 

been tested in real driving scenarios and results show that the presented method reduces the root mean 

square error of the measured acceleration up to 96%. The presented method can be used in managing the 

traffic flow and designing collision avoidance systems.  
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1. Introduction

Recently, the designing of advanced driver

assistance systems and autonomous vehicles has 

driven more attention by researchers [1-3]. 

Autonomous vehicles can not only add a great 

deal of personal comfort for passengers but also 

considerably increase the safety of the overall 

traffic system. The designing of these systems 

needs measurement of vehicle dynamics 

variations [4]. Furthermore, current lateral and 

longitudinal vehicle dynamics controllers are 

designed based on the modelling of driver’s 

behavior in real traffic scenarios [5, 6].  

Recently, due to the development of Micro-

electromechanical Systems (MEMSs), inertial 

MEMS based sensors such as accelerometers and 

gyroscopes tend to be more attractive to the 

researchers. These sensors have some error 

sources, some of which are bias linearity and 

nonlinearity, misalignment error and color noise. 

The effects of these errors can diverge the output 

of the inertial sensors from the real value. 

Therefore calibration algorithms have been 

suggested by researchers for reducing the 

negative effects of these errors. 

 In [7] a stochastic model based on 

frequency-domain and time-domain 

characteristics of the sensor noises for modelling 

of inertial sensors is proposed. In [8] an 

advanced multi-axis micro actuation and sensing 

platform for in situ self-calibration of generic 

MEMS inertial sensors is reported. Shen et al. [9] 

present a calibration method based on the 
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integration of linearity calibration and wavelet 

signal processing. In [10] a model based on 

Allan-Variance method is suggested to derive the 

calibration parameters for MEMS based 

strapdown Inertial Measurement Units (IMUs). 

Inertial based sensors are applied in different 

full-of-uncertainty applications. In these 

situations, the calibration algorithms must be 

robust for having an acceptable performance. 

Neural networks trained by optimization 

algorithms have been used in various researches 

for robust model identification between input-

output data, for example in [11-14].  

In this paper, a new accelerometer calibration 

algorithm based on neural networks trained by 

Levenberg-Marquardt algorithm is presented and 

the performance of the proposed method is 

compared with the trained networks by Gauss-

Newton and Gradient Descent (GD) optimization 

methods.  

The remainder of this paper is as follows. In 

section 2, the structure of artificial neural 

networks is presented. Section 3 describes 

Levenberg-Marquardt algorithm, which is used 

in this paper to train neural network. Section 4 

presents the implementation of the proposed 

calibration algorithm and its experimental 

results. Finally, some concluding remarks and 

possible directions for future works are provided 

in section 5. 

2. Structure of Artificial Neural Networks

A neural network has at least two physical 

components, namely, the processing elements 

and the connections between them [15]. The 

processing elements are called neurons, and the 

connections between the neurons are known as 

links. Every link has a weight parameter 

associated with it. Each neuron receives stimuli 

from the neighboring neurons connected to it, 

processes the information, and produces an 

output. Neurons that receive stimuli from outside 

the network are called input neurons. Neurons 

whose outputs are used externally are called 

output neurons. Neurons that receive stimuli 

from other neurons are known as hidden neurons 

[16].  

Neural networks are of different types, such 

as competitive networks [17], Adaptive 

Response Theory (ART) networks [18], 

Kohonen Self-Organizing Maps (SOM) [19], 

Hopfield networks [20] and feed-forward 

networks [21]. In this paper a feed-forward 

network is used for modelling of the error 

sources in the inertial accelerometer output. The 

specifications of this network are as follows.  

Neurons are arranged in layers, with the first 

layer taking in inputs and the last layer producing 

outputs. The middle layers have no connection 

with the external world, and hence are called 

hidden layers. 

Each neuron in a layer is connected to every 

perceptron on the next layer. Hence, information 

is constantly "fed forward" from one layer to the 

next, and this explains why these networks are 

called feed-forward networks. There is no 

connection among neurons in the same layer. 

The structure of the sample feed-forward neural 

network is shown in Fig. 1. This network has 

three inputs, one hidden layer with three neurons 

and two outputs. 

Fig. 1. Structure of the sample feed-forward neural network 

In this network, the output node of neuron j  is 

calculated using (1). 
 j j jy f I  (1) 

Inputs Outputs 

Input Layer Hidden Layer Output Layer 
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Where 
jf is the activation function of neuron j

and 
jI is the sum of weighted input nodes of 

neuron j that is calculated in (2). 

, , ,0

1

Ni

j j i j i j

i

I w y w


 
  (2) 

Where 
,j iy is the i th input node of neuron j

weighted by
,j iw , and

,0jw is the bias weight of 

neuron j . The goal of the training algorithms is 

the adjustment of the input node and bias 

weights, so that the considered cost function is 

located in its minima. 

3. Levenberg-Marquardt Algorithm

3.1. Optimization Problem 

The Levenberg–Marquardt (LM) algorithm 

[22, 23], which was independently developed by 

Kenneth Levenberg and Donald Marquardt, 

provides a numerical solution to the problem of 

minimizing a nonlinear function. It is fast and 

has stable convergence. In the artificial neural-

networks field, this algorithm is suitable for 

training small and medium-sized problems. 

The LM algorithm blends the steepest 

descent method and the Gauss–Newton 

algorithm. Fortunately, it inherits the speed 

advantage of the Gauss–Newton algorithm and 

the stability of the steepest descent method. It’s 

more robust than the Gauss–Newton algorithm, 

because in many cases it can converge well even 

if the error surface is much more complex than 

the quadratic situation. Although the LM 

algorithm tends to be a bit slower than Gauss–

Newton algorithm (in convergent situation), it 

converges much faster than the steepest descent 

method [24].  

The basic idea of the LM algorithm is that it 

performs a combined training process: around 

the area with complex curvature, this algorithm 

switches to the steepest descent algorithm, until 

the local curvature is proper to make a quadratic 

approximation; then it approximately becomes 

the Gauss–Newton algorithm, which can speed 

up the convergence significantly [25]. 

The problem of LM provides a solution is 

called nonlinear least square minimization. This 

implies that the function to be minimized of the 

following special form: 

2

1

1
( ) ( )

2

m

j

j

f x r x


 
    (3) 

Where  1 2, ,..., nx x x x  is a vector and each 

jr is a function from 
n to  . The 

jr s are 

referred to as residuals and it is assumed that

m n . To make matters easier, f  is 

represented as residual vector : n mr  
defined by (4) 

 1 2( ) ( ), ( ),..., ( )mr x r x r x r x  (4) 

Now, f  can be rewritten as 21
( ) ( )

2
f x r x . The 

derivatives of f can be written using the 

Jacobian matrix J of r  w.r.t x  defined as (5) 

( ) ,1 ,1
j

i

r
J x j m i n

x


    


(5) 

If every ir function is considers as linear, the

Jacobian is constant and r  can be presented as a 

hyper-plane through space. So that f  is given 

by the quadratic form as shown in (6), also

( )f x and 2 ( )f x is calculated by (7) and (8), 

respectively.

21
( ) (0)

2
f x Jx r 

 (6) 

( ) ( )Tf x J Jx r    (7) 

2 ( ) Tf x J J    (8) 

Solving for the minimization by setting

( ) 0f x  , we obtain minx as (9) 

 
1

min

T Tx J J J r


   (9) 

Which is the solution to the set of normal 

equations. 

3.2. LM as a blend of Gradient descent and 

Gauss-Newton Iteration 

Gradient descent is the simplest, most 

intuitive technique to find minima in a function. 

Parameter updating is performed by adding the 

negative of the scaled gradient at each step, as 

(10). 

1i ix x f    (10) 

Simple gradient descent suffers from various 

convergence problems. Logically, we should like 

to take large steps down the gradient descent at 

locations where the gradient is small and 

conversely, take small steps when the gradient is 

large, so as not to rattle out of the minima. With 
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the above update rule, we do just the opposite of 

this. Another issue is that the curvature of the 

error surface may not be the same in all 

directions. For example, if there is a long and 

narrow valley in the error surface, the component 

of the gradient in the direction that points along 

the base of the valley is very small while the 

component along the valley walls is quite large. 

This results in motion more in the direction of 

the walls even though we have to move a long 

distance along the base and a small distance 

along the walls [26]. 

This situation can be improved upon by using 

curvature as well as gradient information, 

namely second derivatives. One way to do this is 

to use Newton’s method to solve the equation

( ) 0f x  . Expending the gradient of f using a 

Taylor series around the current state 0x , ( )f x  

is calculated as (11). 

  2

0 0 0( ) ( ) ( ) . .
T

f x f x x x f x H OT       

(11) 

 

If we neglect the higher order terms (H.O.T) and 

solve for the minimum by setting the left hand 

side of (9) to zero, we get the update rule for 

Newton’s method, as (12) 

  
1

2

1 ( )i i i ix x f x f x


      (12) 

Where, 0x  has been replaced by ix  and x  by

1ix  . 

Since Newton’s method implicitly uses a 

quadratic assumption on f , the Hessian need not 

be evaluated exactly. The main advantage of this 

technique is rapid convergence. However, the 

rate of convergence is sensitive to the starting 

location (or more precisely the linearity around 

the starting location). It can be seen that simple 

gradient descent and Gauss-Newton iteration are 

complementary in the advantages they provide. 

Levenberg proposed an algorithm based on this 

observation [22], whose update rule is a blend of 

the above mentioned algorithms and is given as 

(13) 

 
1

1 ( )i i ix x H I f x


      (13) 

Where H  is Hessian matrix evaluated at ix .This 

update rule is used as follows. If the error goes 

down following an update, it implies that our 

quadratic assumption on ( )f x  is working and 

we reduce   (usually by a factor of 10) to 

reduce the influence of gradient descent. On the 

other hand, if the error goes up, we would like to 

follow the gradient more and so   is increased 

by the same factor. 

It is to be noted that while the LM method is 

in no way optimal but is just a heuristic, it works 

extremely well in practice. The only flaw is its 

need for matrix inversion as part of the update. 

Even though the inverse is usually implemented 

using clever pseudo-inverse methods such as 

singular value decomposition [27], the cost of the 

update becomes prohibitive after the model size 

increases to a few thousand parameters. For 

moderately sized models (of a few hundred 

parameters) however, this method is faster than 

gradient descent. The block-diagram for training 

using LM algorithm is shown in Fig. 2. 

4. Implementation and Experimental Results 

4.1. Experimental Setup 

Experimental setup used in this paper is 

shown in Fig. 3. This work is done in Advanced 

Vehicle Control Systems laboratory (AVCS lab), 

at K.N. Toosi University of Technology. 

The MEMS-based accelerometer is placed in 

the vehicle and an incremental encoder, whose 

resolution is 200 pulse per revolution, is 

connected to the rear wheel of the vehicle. This 

encoder can determine the vehicle’s position by 

the accuracy of approximately 1cm. The 

acceleration measured by encoder output is 

considered as the reference signal. 
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Fig. 2. Block-diagram for training using Levenberg-Mardquardt algorithm; kw  is the current weight, 1kw  is the next weight, 
kE  is 

the current total error and 
1kE 

 is the next total error. 
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a b 

Fig. 3.  Experimental setup, (a) encoder on the wheel, (b) MEMS-based accelerometer 

Fig.4. Comparison between the results of proposed method, GD and Newton Methods. 

4.2. Results and Discussion 

The dynamical model used in this paper for 

modelling of accelerometer output is shown in 

(14). 

 ( ) ( ), ( ), ( 1) , 1,...,e o oa k f n k a k a k k N  

(14) 

Where ea is the model output, n is the assumed

white noise, 
oa is the raw output of the

accelerometer and N  is the number of data. To 

determine the performance of the method, Root 

Mean Square Errors (as shown in (15)) is used. 

    
2

1

1 N

r e

k

RMSE a k a k
N 

 
(15)

Where ra is the reference signal. In Table 1, the

performance of the proposed method is 

compared with Gradient Descent (GD) and 

Newton algorithms. Fig. 4 shows the outputs of 

neural networks trained by mentioned 

algorithms. Results show that the presented 

method has a better performance in lower 

numbers of iterations than trained networks by 

GD and Newton algorithms and better robustness 

against high frequency noises and environmental 

disturbances.
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 The proposed inertial accelerometer 

calibration method can be used in the structure of 

advanced driver assistance systems such as brake 

assist and collision avoidance systems to 

estimate the vehicle acceleration. 

Table1. Performance comparison of the proposed method 

with Newton and GD methods. 

Training Method RMSE Number of 

Iterations 

Newton 0.0326 28 

Gradient Descent 

(GD) 

0.0893 1000 (Maximum) 

Levenberg-

Marquardt (LM) 

0.0318 12 

5. Conclusion 

Measurement of vehicle acceleration is one 

of the most important task to design of driver 

assistance systems and autonomous vehicles. 

Low-cost inertial MEMS-based sensors are 

widely used in the structure of vehicle 

navigation, but the error sources in the output of 

these sensors could have disruptive effects on the 

results. In this paper, a calibration algorithm 

based on neural network trained by Levenberg-

Mardquardt was suggested to remove these 

effects. Results showed that presented method 

has an acceptable performance in real driving 

situations. The presented method can estimate 

the vehicle acceleration and is beneficial to use 

in the structure of advanced driver assistance 

systems. 
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